WWW.ДЕНЬСИЛЫ.РФ

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА - Медицина

 

Pages:   || 2 | 3 | 4 |

Восстановление ароматического кольца 2,4,6-тринитротолуола как путь его деградации

-- [ Страница 1 ] --

На правах рукописи

ЗИГАНШИН АЙРАТ МАНСУРОВИЧ

ВОССТАНОВЛЕНИЕ АРОМАТИЧЕСКОГО КОЛЬЦА

2,4,6-ТРИНИТРОТОЛУОЛА КАК ПУТЬ ЕГО ДЕГРАДАЦИИ

03.00.07 – микробиология

Автореферат

диссертации на соискание ученой степени

кандидата биологических наук

Казань-2007

Работа выполнена на кафедре микробиологии Казанского государственного университета им. В. И. Ульянова-Ленина

Научный руководитель: доктор биологических наук, профессор Наумова Римма Павловна
Официальные оппоненты: доктор ветеринарных наук, профессор Госманов Рауис Госманович (Казанская государственная академия ветеринарной медицины им. Н. Э. Баумана, г.Казань) доктор биологических наук, профессор Мелентьев Александр Иванович (Институт биологии УНЦ РАН, г.Уфа)
Ведущая организация: Казанский институт биохимии и биофизики КНЦ РАН, г.Казань

Защита диссертации состоится «29» ноября 2007 г. в 13 часов на заседании диссертационного совета Д 212.081.08 при Казанском государственном университете по адресу: 420008, г. Казань, ул. Кремлевская, д. 18, главное здание, ауд. 211.

С диссертацией можно ознакомиться в научной библиотеке им. Н. И. Лобачевского при Казанском государственном университете.

Автореферат разослан « 24 » октября 2007 г.

Ученый секретарь диссертационного совета,

доктор биологических наук З. И.  Абрамова

Актуальность проблемы. Производство и использование различных высокоустойчивых синтетических соединений приводит к загрязнению окружающей среды. Среди них большую опасность представляет 2,4,6-тринитротолуол (ТНТ, тротил), наиболее часто применяемое взрывчатое вещество, синтез и использование которого приводит к загрязнению почв, воздуха, поверхностных и грунтовых вод. ТНТ и продукты его нитровосстановления относятся к числу токсичных, потенциально мутагенных и устойчивых загрязнителей, способных длительное время циркулировать в природных системах (Rieger, Knackmuss, 1995; Spain et al., 2000). Агентство по защите окружающей среды США отнесло ТНТ к числу наиболее опасных загрязнителей биосферы, и, в связи с этим, предотвращение контаминации и ремедиация ТНТ-загрязненных территорий признаны необходимыми в местах его производства и использования (Fiorella, Spain, 1997).

Обезвреживание объектов, загрязненных взрывчатыми веществами, прежде всего ТНТ, базируется на применении физических, химических и биологических методов. К примеру, сжигание является одним из наиболее эффективных, радикальных методов уничтожения ТНТ в загрязненных почвах, однако этот подход относится к наиболее энергоемким. Кроме того, его реализация сопряжена с дополнительными экологическими проблемами, в частности, с полной деградацией почвы, с выбросом в окружающую среду оксидов азота (Rodgers, Bunce, 2001).

Основные преимущества биоремедиации заключаются в ее экологичности и низкой стоимости (Rodgers, Bunce, 2001).

Известны два альтернативные пути биологической трансформации ТНТ микроорганизмами. Первый из них затрагивает восстановление нитрогрупп ТНТ и ведет к генерации высокотоксичных соединений, в частности гидроксиламино-динитротолуолов (ГАДНТ) в качестве основных метаболитов (Hughes et al., 1998; Наумов с соавт., 1999; Zaripov et al., 2002; Зарипов с соавт., 2004). В то время как данный путь биотрансформации ТНТ является почти универсальным не только для прокариот, но и для высших эукариот, альтернативный механизм обнаружен лишь у довольно узкого круга. В этом случае восстановительная атака направлена не на нитрогруппы, а на ароматическое кольцо ксенобиотика, причем редукция основана на присоединении гидрид-ионов с образованием ТНТ-гидридных комплексов (Vorbeck et al., 1998; Williams et al., 2004). Принципиальное значение имеет тот факт, что именно гидридное восстановление ТНТ может сопровождаться элиминацией нитрогрупп, что означает переключение на пути метаболизма гораздо менее устойчивых соединений, с сокращенным количеством нитрогрупп. Недостатком большинства работ данного направления (Kim, Song, 2000; Jain et al., 2004; Williams et al., 2004) является то, что образующиеся нитриты анализировались только колориметрическим методом, основанным на реакции Грисса, что означает необходимость подтверждения полученных данных с применением более специфичных методов.

Очевидно, что применение микроорганизмов, способных к гидридной редукции ТНТ и последующей деградации образовавшихся комплексов при обезвреживании ТНТ-загрязненных объектов, перспективно с точки зрения эффективности биоремедиации.

ТНТ, помимо экологических аспектов его трансформации, представляет интерес как модель поведения нитроарилов в организме высших эукариот, поскольку они не только контактируют с этим веществом в условиях промышленных производств военного профиля, но и находятся под воздействием лекарств и пестицидов, молекулы которых содержат нитроароматические фрагменты.

Цель данной работы – осуществить идентификацию и разностороннюю характеристику совокупности гидридных комплексов – интермедиатов восстановительной атаки 2,4,6-тринитротолуола дрожжами. Оценить роль внешних физико-химических факторов с точки зрения глубины деструкции 2,4,6-тринитротолуола.



Основные задачи исследования:

  • выделить из природных и антропогенных источников обитания микроорганизмы, способные к гидридной атаке молекулы 2,4,6-тринитротолуола и денитрации образовавшихся гидридных комплексов;
  • изучить влияние аэрации на рост изолятов, трансформирующих 2,4,6-тринитротолуол по пути редукции его ароматического кольца, и связанную с этим глубину разложения ксенобиотика;
  • охарактеризовать углеродсодержащие метаболиты трансформации 2,4,6-тринитротолуола выделенными штаммами с применением нового ВЭЖХ-диодного метода в сочетании с масс-спектрометрией;
  • выявить неорганические продукты денитрации 2,4,6-тринитротолуола и расширить представления о механизме отщепления нитрогрупп от исходного ксенобиотика;
  • оценить возможность превращения индивидуальных гидридных комплексов 2,4,6-тринитротолуола как в абиотических условиях, так и под действием клеток дрожжей, реализующих механизм редукции токсиканта по пути присоединения гидрид-ионов к его бензольному кольцу;
  • оценить возможности использования выделенных и изученных в данной работе изолятов с точки зрения биоремедиации объектов, загрязненных 2,4,6-тринитротолуолом.

Научная новизна. В результате широкого скрининга микроорганизмов в настоящей работе выделены 2 штамма дрожжей – Yarrowia lipolytica AN-L15 и Geotrichum candidum AN-Z4, которые восстанавливают ТНТ по пути присоединения гидрид-ионов к его ароматическому кольцу и одновременно отщепляют нитрогруппы от образовавшихся метаболитов. На основе способности дрожжей к трансформации исходного токсиканта по данному пути впервые обнаружены восемь гидридных комплексов ТНТ, тогда как ранее в литературе сообщалось о существовании лишь пяти форм. Выявлен и охарактеризован также дигидридный комплекс ТНТ, существование которого раньше базировалось только на предположениях. Все обнаруженные интермедиаты в данной работе охарактеризованы с применением усовершенствованных аналитических методов, что позволило представить их хроматографические, спектрофотометрические и масс-спектральные характеристики.

Установлена способность дрожжей к разрушению трех ТНТ-гидридных комплексов с промежуточной аккумуляцией нитрит-ионов. Впервые доказано образование нитрат-иона как результата окисления дрожжами ранее выделившегося нитрит-иона. Способность к денитрации ТНТ в сочетании с окислением нитрит-иона в нитрат-ион изучаемыми дрожжами уникальна и представляет интерес с точки зрения биоремедиации ТНТ-загрязненных объектов.

Выявлено стимулирующее влияние аэрации и снижения рН среды на деградацию ТНТ-гидридных комплексов дрожжами Y. lipolytica AN-L15 и G. candidum AN-Z4.

Впервые осуществленная ВЭЖХ-очистка восьми гидридных форм ТНТ позволила продемонстрировать возможность их взаимного абиотического превращения. Доказано непосредственное участие дрожжей в элиминации нитрогрупп из интермедиатов гидридного восстановления ТНТ.

Практическая значимость. Способность детектировать метаболиты превращения ТНТ по альтернативным путям его восстановления очень важна с позиций оценки эффективности ремедиации ТНТ-загрязненных объектов. Совершенствование методов обнаружения данных интермедиатов, несомненно, способствует пониманию более глубоких механизмов трансформации исходного взрывчатого вещества. Так, примененный в данной работе новый ВЭЖХ-диодный метод разделения продуктов нитроредукции ТНТ, разработанный коллегами из Университета штата Монтана (США) под руководством профессора Р. Герлаха, позволил разделить и идентифицировать углеродсодержащие метаболиты восстановления ароматического кольца, что не было достигнуто ни в одной из предшествующих работ. Наша работа позволила по-новому взглянуть на механизм трансформации ТНТ низшими эукариотами, обнаружить нитрит- и нитрат-ионы, которые являются индикаторами частичной минерализации исходного токсиканта. Раскрытие данного механизма в будущем должно повысить эффективность технологий по обезвреживанию ТНТ-загрязненных территорий.

Дрожжи Y. lipolytica AN-L15 и G. candidum AN-Z4, выделенные нами из нефтезагрязненных торфяников и отходов нефтехимии, являются доминирующими микроорганизмами в этих антропогенных местообитаниях. Их поистине удивительная способность выживать и доминировать в таких экстремальных условиях, в сочетании с уникальным механизмом деградации ТНТ, делает данные штаммы перспективными с точки зрения биоремедиации промышленных отходов, загрязненных взрывчатыми веществами.

Связь работы с научными программами. Исследования поддержаны федеральными программами “Развитие научного потенциала высшей школы” РНП.2.1.1.1005, РНП.2.1.1.3222 и “Исследования и разработки по приоритетным направлениям науки и техники” ГК 02.434.11.3020, ГК 02.512.11.2050, ГК ФЦКП КГУ 02.451.11.7019, Комиссией Европейских Сообществ, грант ICA2-CT-2000-10006. Авторские исследования получили персональную поддержку Магистерской/Аспирантской Программы Фулбрайта (США) (Institute of International Education Grantee ID : 15061570).

Положения, выносимые на защиту.

  1. С применением усовершенствованных физико-химических методов идентифицированы и охарактеризованы восемь гидридных комплексов, которые являются интермедиатами трансформации 2,4,6-тринитротолуола дрожжами Yarrowia lipolytica AN-L15 и Geotrichum candidum AN-Z4.
  2. Установлена возможность взаимного абиотического превращения индивидуальных гидридных форм 2,4,6-тринитротолуола, не сопровождающегося элиминацией нитрогрупп.
  3. Трансформация 2,4,6-тринитротолуола штаммами Yarrowia lipolytica AN-L15 и Geotrichum candidum AN-Z4 через образование промежуточных гидридных комплексов ведет к минерализации исходного ксенобиотика.

Апробация работы. Основные положения диссертации представлены на школах-конференциях молодых ученых “Экотоксикология: современные биоаналитические системы, методы и технологии” (Пущино-Тула, 2006) и “Биология – наука XXI века” (Пущино, 2003, 2005, 2006), научных конференциях “Биотехнология – охране окружающей среде” (Москва, 2006) и “Постгеномная эра в биологии и проблемы биотехнологии” (Казань, 2004), международной конференции “Issues and solutions in discovery and use of novel biomolecules: biodiversity and environment” (Pushchino, 2004).





Публикации. По теме диссертации опубликовано 15 научных работ.

Благодарности. Автор выражает огромную благодарность своему научному руководителю д.б.н., профессору кафедры микробиологии КГУ Наумовой Римме Павловне за предоставление интересной темы диссертационной работы, за ценные идеи в процессе ее выполнения. Благодарность выражается профессору Герлаху Робину (Center for Biofilm Engineering, Montana State University, USA) за приглашение автора в рамках Магистерской/Аспирантской Программы Фулбрайта, за предоставление экспериментального оборудования для выполнения научно-исследовательской работы, за помощь в освоении приборов и методов, в интерпретации результатов. Автор признателен к.б.н. Наумову А. В. за предоставление уникальных штаммов микроэукариот (Candida spp), за помощь в создании базовых позиций в изучении малоизвестного пути превращения ТНТ. На первых этапах освоения ВЭЖХ-анализа большую помощь автору оказали к.х.н. Гарусов А. В. (кафедра микробиологии КГУ), к.б.н. Шурхно Р. А. и Абдульханов А. Г. (Тат НИИСХ).

Автор искренне признателен Программе Фулбрайта (США) за предоставление уникальной возможности выполнить часть экспериментальной работы в университете Соединенных Штатов и также считает своим приятным долгом принести благодарность аспирантам и студентам НИЛ ЭББ КГУ, особенно Науменко Е. А. и Хиляс И. В.

Структура и объем диссертации. Диссертация состоит из следующих разделов: введения, обзора литературы, описания материалов и методов, изложения результатов исследований и их обсуждения, заключения, выводов и списка литературы. Работа изложена на 122 страницах машинописного текста, содержит 3 таблицы и 22 рисунка. Цитируемая литература включает 150 источников, из них 143 иностранных.

МАТЕРИАЛЫ И МЕТОДЫ

Источники и условия выделения микроорганизмов. Для скрининга микроорганизмов, способных к гидридному восстановлению ароматического кольца ТНТ в сочетании с его денитрацией, использовали 428 изолятов, предварительно полученных в НИЛ ЭББ КГУ при посевах воды водоемов – рек Волги и Казанки (в пределах города Казани), активного ила аэротенков, очищающих сточные воды химического и нефтехимического комплексов, незагрязненных черноземных почв, нефтезагрязненных почв нефтедобывающего региона Татарстана, замазученных торфяников Западной Сибири, твердых отходов нефтехимии, на агаризованные среды: мясо-пептонный агар для аэробных гетеротрофов и среду Сабуро для дрожжей.

Предварительный скрининг чистых культур изолятов на способность трансформировать ТНТ по альтернативным путям осуществляли с использованием десятикратно разбавленных мясо-пептонного бульона и жидкой среды Сабуро, содержащих ТНТ в концентрации 0.22 мМ. О функционировании того или иного пути свидетельствовало характерное окрашивание сред: темно-красное в случае гидридного пути, ведущего к образованию ТНТ-моногидридных комплексов, и светло-зеленое в случае мононитровосстановления, сопряженного с аккумуляцией ГАДНТ. Содержание нитрит- и нитрат-ионов оценивали (как указано ниже) у тех штаммов, которые продуцировали ТНТ-гидридные комплексы.

Идентификация дрожжей. Родовая и видовая принадлежность дрожжей, выделенных в результате вышеуказанного скрининга, была проведена с использованием определителя Барнета (Barnett et al., 1983). Видовая принадлежность дрожжей была уточнена по результатам секвенирования D2 региона большой субъединицы рРНК в лаборатории MIDILABS ( http://www.midilabs.com ).

Культивирование дрожжей. Эксперименты по динамике трансформации ТНТ проводили со штаммами дрожжей: Yarrowia lipolytica AN-L15, выделенным из загрязненных нефтью торфяников (Лангепас, Западная Сибирь), и Geotrichum candidum AN-Z4, выделенным из нефтешлама – отхода нефтехимического предприятия “Нижнекамск-нефтехим” (Нижнекамск, Татарстан). В отдельных опытах использовали Candida spp. AN-L7, AN-L13, AN-L14, AN-L20 – изоляты, выделенные в прежней работе (Zaripov et al., 2002) из нефтезагрязненных торфяников Западной Сибири.

Дрожжи поддерживали в аэробных условиях на агаризованной среде Сабуро, содержащей (г/л дистиллированной воды): глюкозу – 10.0, пептон – 10.0, дрожжевой экстракт – 5.0, NaCl – 0.25, агар – 20.0. Для изучения трансформации ТНТ использовали синтетическую среду, содержащую (мМ): глюкозу – 28, (NH4)2SO4 – 7.6, MgSO4 – 2. Фосфатный буфер (рН 6.0-7.0) стерилизовали отдельно и вносили перед инокуляцией в конечной концентрации 16 мМ. ТНТ вносили из расчета 440 мкМ в растворе этанола (0.8 мл 95.6% этанола в 50 мл среды). В отсутствие ТНТ (контроль) в состав синтетической среды также входил этанол в том же количестве.



Pages:   || 2 | 3 | 4 |
 


Похожие работы:







 
2013 www.деньсилы.рф - «МЕДИЦИНА-ЛЕЧЕНИЕ-ОЗДОРОВЛЕНИЕ»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.