WWW.ДЕНЬСИЛЫ.РФ

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА - Медицина

 

Pages:   || 2 | 3 | 4 |

Детоксикация хитозаном нефтезагрязненных почв волгоградской агломерации

-- [ Страница 1 ] --

На правах рукописи


Кокорина Надежда Геннадьевна




Детоксикация хитозаном

нефтезагрязненных почв Волгоградской

агломерации

03.02.08 – экология (биологические науки)

03.02.13 – почвоведение

АВТОРЕФЕРАТ

диссертации на соискание ученой степени

кандидата биологических наук

Ростов-на-Дону – 2012

Работа выполнена на кафедре процессов и аппаратов химических производств и кафедре промышленной экологии и безопасности жизнедеятельности

Волгоградского государственного технического университета

Научные руководители: доктор биологических наук, профессор Околелова Алла Ароновна доктор технических наук, профессор Голованчиков Александр Борисович
Официальные оппоненты: Безуглова Ольга Степановна, доктор биологических наук, профессор, профессор кафедры почвоведения и оценки земельных ресурсов Южного федерального университета Луганская Ирина Анатольевна, кандидат биологических наук, доцент, зав. кафедрой химии и прикладной экологии Новочеркасской государственной мелиоративной академии
Ведущая организация: Российский научно-исследовательский институт проблем мелиорации, г. Новочеркасск

Защита диссертации состоится 18 мая 2012 г. в 15.00 на заседании диссертационного совета Д 212.208.32 по биологическим наукам при Южном федеральном университете (344006, г. Ростов-на-Дону, ул. Большая Садовая, 105, ЮФУ, ауд. 304, e-mail: denisova777@inbox.ru, факс: (863) 263-87-23).

С диссертацией можно ознакомиться в библиотеке Южного федерального университета (344006, г. Ростов-на-Дону, ул. Пушкинская, 148).

Автореферат разослан « » апреля 2012 г. и размещен в сети Интернета на сайте ЮФУ http://www.sfedu.ru и на сайте Минобрнауки России www.vak.ed.gov.ru

Ученый секретарь диссертационного совета,

доктор биологических наук Т.В. Денисова

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность исследований. Количество градообразующих химических и металлургических предприятий в черте Волгоградской агломерации, пожалуй, самое большое в России. Через территорию города проходят крупнейшие транзитные автомагистрали, соединяющие юг страны с центром. Это причина мощного потока токсикантов, поступающего в почвы агломерации. Детоксикация почв, загрязненных поллютантами органического происхождения, одна из самых актуальных в вопросах их охраны и защиты. Самым распространенным и наиболее эффективным методом быстрого сбора нефтепродуктов является сорбция. В мире на данный момент насчитывают около двухсот видов различных сорбентов. Наиболее экологически и экономически рационально использовать природные сорбенты.

Нами впервые предложено применять хитозан для сорбции нефтепродуктов (НП) из почв. Ранее его использывали только для очистки сточных вод от нефтепродуктов (Фрайман и др., 1978; Гальбрайх, 2001; Клочкова, 2001; Коральник, Пучкова, 2001; Фомин, Гузеев, 2001; Чернышенков и др., 2001; Немцева, 2006; Сафонов, и др., 2008; Уткина, Каблов, 2009; Schorigin, Heit, 1934, 1935; Freiman и др., 1978; Varlamov и др., 2000-2003; Bykova и др., 2005; Kulikov и др., 2006).

Хитозан – природный биополимер, нетоксичен. Его высокая сорбционная способность вызвана не только физико-химическими свойствами, но и развитой поверхностной структурой.

Цель работы – установить наиболее эффективные способы использования хитозана различного происхождения и агрегатного состава для детоксикации почв, загрязненных основными видами нефтепродуктов.

Задачи исследования:

  1. установить концентрацию нефтепродуктов в почвах исследуемых объектов Волгоградской агломерации, оценить информативность данных о накоплении в почве нефтепродуктов;
  2. разработать методики детоксикации почв с учетом их генетических свойств, вида и концентрации поллютантов; исследовать эффективность сорбции нефтепродуктов с помощью хитозана различного агрегатного состава (твердого и жидкого), концентрации и сроков экспозиции;
  3. определить рациональные экологически целесообразные способы и сроки сорбции основных видов нефтепродуктов в почвах;
  4. исследовать фитотоксичность различных типов почв при их загрязнении нефтепродуктами, установить механизмы биоразложения поллютантов под действием комплекса почвенных микроорганизмов в присутствие сорбента и без него.

Основные положения, выносимые на защиту.

    1. Существующие методы оценки концентрации нефтепродуктов в почвах мало информативны. Нами предложен коэффициент накопления нефтепродуктов в почве с учетом их качественного состава. Установлено, что для всех нефтяных месторождений России величина коэффициента накопления в среднем равна 1,2. Содержание нефтепродуктов в почвах предложено рассчитывать по вкладу антропогенного углерода в почвенные запасы этого элемента. С использованием этого коэффициента нами разработана градация содержания нефтепродуктов в почвах и выявлено сильное и очень сильное загрязнение почв АЗС нефтепродуктами (77,9-81,9 %) городов Волгоград и Волжский.
    2. Разработаны методы детоксикации почв, позволяющие снизить количество нефтепродуктов в светло-каштановых почвах различного гранулометрического состава с помощью хитозана: в 1,15-4,77 раз в песчаных разновидностях, в 10,19-77,41 раза – в глинистых. Установлено, что эффективность сорбции нефтепродуктов зависит от гранулометрического состава почвы и агрегатного состояния применяемого сорбента. При использовании мелко измельченного хитозана полнота извлечения нефтепродуктов в песчаной разновидности ниже, чем в глинистой, а с применением раствора хитозана зависимость обратная. Полнота извлечения достигается на 4 сутки и составляет 99,96 % независимо от гранулометрического состава светло-каштановых почв обоих случаях.

3. Токсичность почвы при загрязнении их нефтепродуктами определяется степенью их сорбции почвенной массой. Наиболее полное поглощение нефтепродуктов почвенной массой наблюдается при использовании бензинов А-80 и А-95 независимо от типа и гранулометрического состава почвы. Нефть поглощается полностью только светло-каштановой песчаной почвой. Сорбция остальных видов нефтепродуктов зависит от гранулометрического состава почвы и содержания в ней гумуса. Аллювиальная дерновая почва характеризуется полным поглощением изучаемых нефтепродуктов, кроме сырой нефти, что обусловлено достаточно высоким содержанием гумуса.



4. Скорость восстановления аллювиальной почвы при использовании хитозана составляет 2 месяца, что значительно выше, чем без внесения сорбента (3 года). Эффективность хитозана для детоксикации почв зависит от содержания гумуса и гранулометрического состава: если аллювиальная дерновая восстанавливается через 2 месяца, то светло-каштановая почва той же разновидности (песчаная) – через 4 месяца. Светло-каштановые глинистые почвы восстанавливаются в 1,5 раза быстрее, чем песчаные. Выявлены механизмы очистки почв от нефтепродуктов при участии микобактерий, грибов, инфузорий.

Научная новизна работы.

  1. Разработан и предложен информативный показатель расчета содержания нефтепродуктов в почве – коэффициент накопления (Кн) с учетом содержания органического углерода антропогенного происхождения.
  2. Впервые предложено использовать природный сорбент хитозан, получаемый из хитинсодержащих отходов, для детоксикации почв, загрязненных основными видами нефтепродуктов. В качестве основного источника сырья использовали отходы, образующиеся при очистке турбин Волжской ГЭС, дополнительным источником сырья были отходы креветок перерабатывающих заводов.
  3. Разработанные методики детоксикации почв различного генезиса с помощью хитозана позволяют снизить содержание нефтепродуктов в 1,2 – 77,4 раза в зависимости от вида, концентрации поллютанта, фитотоксичности почв, агрегатного состава сорбента, происхождения исходного сырья для его получения, сроков экспозиции, размера частиц хитозана и концентрации применяемых растворов биополимера;
  4. Определена фитотоксичность различных типов почв (светло-каштановых песчаных и глинистых, аллювиальных дерновых) в зависимости от концентрации поллютанта и его вида (бензины А-95, А-92, А-80 и различного класса экологичности (ЭКТО-3), ТМ, ДТ и ДТ ЭКТО-3, НШ, нефть). Выявлены механизмы очистки почв от нефтепродуктов при участии микобактерий, грибов и инфузорий.

Практическая значимость.

    1. При проектировании и строительстве АЗС предложено создавать сорбционные барьеры. Это позволяет: 1) предусмотреть меры по предотвращению загрязнения нефтепродуктами почв и сопредельных сред (атмосфера, грунтовые воды, растения); 2) решить проблему утилизации хитинсодержащих отходов; 3) провести очистку нефтезагрязненных почв.
    2. В ходе проделанной работы над диссертацией была разработана и апробирована методика приготовления хитозана, модернизирован способ его получения из отходов, образующихся при очистке турбин Волжской ГЭС (жабронога) и отходов заводов, перерабатывающих креветки (пат. РФ № 2310504 опуб. 20.11.2007, П. М. РФ: № 74831 опуб. 20.07.2008 и № 88279 опуб. 10.11.2009, № 95275 опуб. 27.06.2010).

Личный вклад автора. Автору принадлежит постановка проблемы, разработка теоретических положений, оценка загрязнения почв нефтью и нефтепродуктами, методические разработки. Анализ фондовых материалов, обобщение полученных данных, лабораторные, полевые и экспериментальные исследования выполнены лично автором.

Апробация работы. Материалы и результаты работы были представлены на научных конференциях региона (2006-2011), всероссийской научно-технической конференции «Приоритетные направления развития науки и технологий» (Тула, 2008); XI-XIII Докучаевские молодёжные чтения, (СПб, 2008-2010.); V съезде Всероссийского общества почвоведов им. В. В. Докучаева, (Ростов-на-Дону, 2008); XVI-XVII международных конференциях «Почвоведение», (МГУ, Москва, 2009, 2011); V Всероссийской научной конференции с международным участием «Гуминовые вещества в биосфере», (СПб, 2010).





Публикации. По теме диссертации опубликовано 49 научная работа, в том числе 5 – в журналах, рекомендованных ВАК, общий объем в 10,8 п. л. Доля участия автора в публикациях составляет 60 %.

Структура и объем диссертации. Диссертационная работа изложена на 191 страницах машинописного текста, состоит из введения, 6 глав, выводов и предложений, содержит 37 таблиц и 173 иллюстраций, в том числе в приложении – 14 таблицы и 156 иллюстраций. Список литературы включает 416 работ, в том числе 83 – иностранных.

Автор глубоко признателен за помощь в работе научным сотрудникам почвенной станции МГУ В. В. Дёмину и Ю. А. Завгородней.

СОДЕРЖАНИЕ РАБОТЫ

Глава 1. Способы снижения доли нефтепродуктов в почвах

Глава посвящена анализу методов сорбции нефтепродуктов из почвы и истории получения и применения хитозана.

Глава 2. Объекты и методы исследования

Объект № 1 – АЗС № 1 г. Волжского, светло-каштановая глинистая почва. Объект № 2 – АЗС № 3 г. Волжского, аллювиальная песчаная. Объект № 3, окрестности ГЭС, аллювиальная дерновая насыщенная темноцветная песчаная. Объект № 4 – АЗС № 2, р. п. Средняя Ахтуба, светло-каштановая песчаная. Объект № 5 – заброшенная АЗС Волгограда, светло-каштановая песчаная. Объект № 6 – целина, УНПЦ «Горная поляна», светло-каштановая легкосуглинистая. Объект № 7 – СЗЗ «ХИМПРОМА», светло-каштановая супесчаная. Объект № 8 – Пахотина балка, лугово-каштановая супесчаная. В качестве основного сырья для получения хитозана предложено использовать отходы, образующиеся при очистки турбин Волжской ГЭС, в качестве дополнительного источника сырья – отходы креветка перерабатывающих заводов.

Отбор проб, подготовку почв к анализу проводили по ГОСТу 17.4.4.02-84. Содержание углерода в почве определяли на «Флюорате 02-3М ЛЮМЭКС». Структуру хитозана исследовали с помощью ИКС-Фурье на спектрофотометре BRUKER c программным обеспечением OPUS и микроскопом Altami Polar 312. Сорбция нефтепродуктов из почвы и песка хитозаном. Навеску и аликвоту сорбента подбирали так, чтобы во всех вариантах было одинаковое его количество. Опыт вели с добавлением мелко измельченного хитозана, 0,1 % и 0,05 % растворов хитозана. Песок предварительно обрабатывали концентрированной H2SO4. Определение глубины проникновения нефтепродуктов и раствора хитозана в почвах, полевой и модельный опыты. Определение фитотоксичности. Объектами послужили светло-каштановые песчаные и глинистые, аллювиальные дерновые почвы и песок с АЗС и Коробковского месторождения. Тестовым растением выбрали овес (Avena sativa). Определение биоразложения поллютантов почвенным микробиоценозом в присутствии сорбента и без него проводили на тех же образцах, что и определения фитотоксичности. Для получения накопительной культуры использовали посев на минеральную питательную среду, содержащую парафин и нефтепродукты.

Глава 3. Нормирование нефтепродуктов в почвах

При оценке степени загрязнения почв НП используют в качестве допустимого уровня величину, равную 1,0 г/кг, хотя его обоснование отсутствует. Независимо от методики определения нефтепродуктов в почвах необходим обязательный учет органических соединений самой почвы. При накоплении нефтепродуктов актуальна проблема правильного расчета их содержания.

Существуют способы, по которым долю НП в почве определяют по содержанию в ней органического углерода. Но НП содержат не только углерод. Значит, их концентрация будет больше. Предлагаем для учета количества НП ввести Кn – коэффициент накопления НП в почве и формулу его определения: ,

где n – суммарная доля углерода всех индивидуальных углеводородов, входящих в состав нефти, %; 100 – поправочный коэффициент.

Расчет суммарной доли углерода представлен на примере нефти Коробковского месторождения Волгоградской области. Ее состав: этана – 2,30 %, пропана – 19,60, изобутана – 21,00, н-бутана – 57,10.

Долю углерода в молекуле этана рассчитывают по формуле:

,

где С(С2Н6) – доля углерода в молекуле этана; 28 – атомный вес двух

атомов углерода, 34 – атомный вес этана.

Для определения процентного содержания этана в составе нефти (х) составляем пропорцию:

2,30 – 100 %

х – 82,35 %,

тогда получим Х = С(С2Н6) = 1,89 г

Аналогично рассчитываем долю углерода в молекулах пропана и бутанов. Складываем их общее содержание в составе нефти:

n=1,89+16,8+64,71=83,4 г

и находим коэффициент накопления:

Используя данные о качественном составе нефтей, мы просчитали коэффициент накопления для 106 нефтяных месторождений 15 регионов России. Коэффициент накопления изменяется в диапазоне 1,19-1,21. Предлагаем принять значение Кn = 1,2. Мы осознаем, что при наличии более детальных данных о качественном составе нефти, значение коэффициента накопления будет уточняться. Для определения доли НП в почве по содержанию антропогенного происхождения, предлагаем его значение умножать на коэффициент накопления:

НП = Сант Кn,

где НП – содержание нефтепродуктов, %; Сант – значение органического углерода в загрязненной почве, %

Сант= Сорг - Сфон, %;

Сфон, Сорг – органический углерод соответственно в незагрязненной и загрязненной почвах.

Доля НП в почвах обследованных объектов приведена ниже (табл. 3).

Таблица 3. – Содержание органического углерода и НП в почвах, %

Объект

Окрестности АЗС



Pages:   || 2 | 3 | 4 |
 


Похожие работы:







 
2013 www.деньсилы.рф - «МЕДИЦИНА-ЛЕЧЕНИЕ-ОЗДОРОВЛЕНИЕ»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.