WWW.ДЕНЬСИЛЫ.РФ

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА - Медицина

 

Pages:     | 1 |   ...   | 3 | 4 || 6 | 7 |   ...   | 9 |

Комплексное исследование метилотипов злокачественных новообразований: фундаментальные и прикладные аспекты

-- [ Страница 5 ] --

За всю историю практического использования МЧ-ПЦР в исследованиях и диагностике вопросы о необходимости таких контролей поднимались (и решались) лишь на этапе разработки технологии как таковой (конец 80-х годов прошлого века, на уровне однолокусных реакций) и в последние годы (после 2005 г., в связи с внедрением высокопроизводительных технологий метилчувствительного анализа). В одной из ранних работ при формировании внутреннего контроля полноты гидролиза удачно эксплуатируется неметилированное состояние ДНК М13, которая использовалась в качестве носителя при экстракции ДНК исследуемых эукариот (Singer-Sam J. et al, 1990а). Теми же авторами был предложен и элегантный дизайн контроля эффективности ПЦР, для которого in vitro искусственно создавалась делеция тестируемого локуса, элиминирующая сайт узнавания метилчувствительной рестриктазы (Singer-Sam J. et al, 1990b).

Анализ литературы показывает, что предложенные в 1990 г. технические решения впоследствии на практике не применялись. Тем не менее, общая идеология дизайна контроля полноты гидролиза на основе матрицы, всегда содержащей сайты узнавания метилчувствительной рестриктазы в неметилированном состоянии, сохранилась в более поздних разработках. Так, в дизайне количественного теста для определения аномалий метилирования при синдромах Прадера-Вилли и Ангельмана в формате MLPA (мультиплексной лигазной проба-зависимой амплификации) авторы использовали в качестве такой матрицы участок промоторного CpG-островка гена MLH1 (Procter M. et al., 2006). Другая технология определения количественного метилирования при тех же синдромах, основанная на ПЦР в реальном времени, использует в качестве контроля полноты гидролиза промоторный участок гена CFTR (von Kanel T. et al., 2010).

Следует учитывать, что указанные контроли полноты гидролиза ДНК разработаны для использования в исследованиях, связанных с геномным импринтингом. При болезнях импринтинга нарушения характера метилирования ограничены достаточно небольшими хромосомными участками (в частности, при синдромах Прадера-Вилли и Ангельмана – 15q11-q13). Это позволяет рассматривать практически весь остальной метилом как стабильную систему и как плацдарм для произвольного выбора контрольных локусов. Такая логика неприменима в исследованиях аномалий метилирования при канцерогенезе. В геномах злокачественных новообразований наблюдаются многочисленные нарушения нормального метилирования, в том числе гиперметилирование CpG-островков, что не позволяет использовать большую их часть в качестве контрольных. Так, для MLH1, который является классическим геном–супрессором опухолевого роста, показана частая инактивация в опухолях посредством метилирования промоторного CpG-островка (Залетаев Д.В. с соавт., 2009). Аномальному метилированию при канцерогенезе могут подвергаться и гены, предполагать роль инактивации которых в формировании фенотипа опухолевых клеток a priori трудно. Например, промотор гена CFTR, неметилированный во всех нормальных тканях, демонстрирует плотное метилирование в клеточных линиях РМЖ и РПЖ, HeLa, MCF7, и LNCaP. Таким образом, этот локус может служить контрольным лишь для исследований аномалий метилирования при врожденных генетических болезнях, в то время как в исследованиях метиломов опухолевых клеток состояние его метилирования может оказаться скорее маркерной, чем контрольной категорией.

В то же время принадлежность гена классу опухолевых супрессоров не означает автоматически возможности аномального метилирования его промоторной области в геномах опухолей. Одним из примеров такого рода служит ген ING1, продукт которого непосредственно взаимодействует с белком р53 и является компонентом соответствующего регуляторного пути, т.е. задействован в процессах остановки клеточного цикла и инициации апоптоза. Нарушения экспрессии ING1 характерны для самых разнообразных злокачественных опухолей, а частота потери гетерозиготности, в частности, в образцах НМРЛ превышает 50% (Luo Z.G. et al., 2011). В промоторной области гена расположен классический CpG-островок, что обусловило проведение исследования, ставящего целью выявить его маркерное аномальное метилирование при канцерогенезе. Результат получен неожиданный: исследуемый CpG-островок неметилирован не только в нормальных тканях человека (кровь, буккальный эпителий, аутопсийный материал молочной железы), но и во всех исследованных типах опухолей – РМЖ, ОЛЛ, НМРЛ, РП, РПЖ, РЖ, РМП. Статус метилирования ING1, исследованный в общей сложности на более чем 1000 образцов биологического материала, во всех случаях оказался отрицательным. Результаты настоящего исследования подтверждаются недавно опубликованными на сайте Калифорнийского университета ( http://genome.ucsc.edu ) результатами ограниченного бисульфитного секвенирования CpG-островка гена ING1.

Таким образом, возможность дифференциального метилирования геномных локусов в опухолях далеко не в полной мере определяется функцией гена и промоторным расположением его CpG-островка. Вопрос о дополнительных предикторах дифференциального метилирования обсуждается ниже, однако необходимо принимать во внимание, что использование локуса в качестве субстрата для формирования контролей полноты гидролиза ДНК для МЧ-ПЦР должно предваряться подробными исследованиями характера его метилирования в широком спектре нормальных и опухолевых тканей. Результаты такого рода исследования, проведенного для CpG-островка гена ING1, позволили впервые предложить обоснованные контроли полноты гидролиза для МЧ-ПЦР (рис. 11).



 Пример анализа метилирования промотора гена LAMC3 методом МЧ-ПЦР. М-9

Рис. 11. Пример анализа метилирования промотора гена LAMC3 методом МЧ-ПЦР. М – маркер молекулярной массы ДНК. N – отрицательный контроль ПЦР. 1-5 – парные образцы тканей молочной железы (t – опухоль, n – норма). 1t и 2t – метилированное состояние промотора LAMC3 в опухолях. Р – положительный контроль ПЦР (в качестве матрицы использована негидролизованная ДНК). Для контроля полноты гидролиза ДНК использован фрагмент гена ING1, содержащий сайты узнавания метилчувствительной рестриктазы, но не подвергающийся метилированию в опухолях. Внутренний контроль ПЦР обеспечивает фрагмент гена MeCP2, не содержащий сайтов узнавания используемой рестриктазы. Приводится по источнику: Стрельников В.В., Кузнецова Е.Б., Залетаев Д.В. в учебнике "Системы генетических и эпигенетических маркеров в диагностике онкологических новообразований", 2009. С. 96.

Решение вопроса о формировании систем контролей эффективности амплификации для МЧ-ПЦР также оказалось неочевидным. В частности, предпринят подход к использованию в качестве контрольных участков нормально импринтированных генов. Для CpG-островков импринтированных генов показано постоянное метилирование одного из аллелей в тканях взрослого организма, за исключением довольно редких случаев болезней импринтинга (Немцова М.В., Залетаев Д.В., 2004). Проведен анализ характера метилирования импринтированного гена IGF2 в образцах НМРЛ, РМЖ, ретинобластомы и ОЛЛ, показавший, что при этих злокачественных новообразованиях наблюдается потеря импринтинга, которая выражается в аномальном деметилировании гена IGF2. Таким образом, критерий состояния метилирования гена IGF2 можно использовать скорее как маркер опухолевого процесса, нежели как признак эффективности амплификации в МЧ-ПЦР.

После исключения возможности использования импринтированных локусов в качестве основы для дизайна контролей эффективности МЧ-ПЦР была предпринята попытка такого дизайна на основе последовательностей генома, полностью лишенных сайтов узнавания используемых метилчувствительных рестриктаз (HpaII, HhaI). Важно, что кандидатные локусы должны обладать общими свойствами с последовательностями, тестируемыми методом МЧ-ПЦР, а именно, характеризоваться богатым G,C-составом для обеспечения специфического отжига всех пар праймеров при проведении многолокусной реакции. Проведенный поиск таких последовательностей лишь подтвердил известный факт высокой плотности сайтов узнавания метилчувствительных рестриктаз в участках G,C-обогащения. По результатам нашей работы максимальная протяженность внутреннего контрольного продукта МЧ-ПЦР, для формирования которого приемлемы температуры отжига праймеров, превышающие 68°С, составила 105 п.н. (участок CpG-островка гена MeCP2). Пример использования этого внутреннего контроля представлен на рис. 11. Очевидным его недостатком является малый размер ПЦР-продукта, не удовлетворяющий требованию к внутреннему контролю ПЦР о превышении размера тестируемого фрагмента.

Ключ к формированию внутренних контролей МЧ-ПЦР получен в настоящей работе по результатам использования методов непредвзятого скрининга метиломов, выявивших локусы, постоянно метилированные во всех исследованных нормальных и опухолевых тканях. В частности, с использованием AFLOAT выявлено константное метилирование участков генов CUX1, MAD1L1, TAF4, ZBTB4. Протяженности охарактеризованных константно метилированных последовательностей достаточны для формирования систем внутреннего контроля эффективности МЧ-ПЦР с любой разумной молекулярной массой и широким выбором температур отжига праймеров.

Метилчувствительная ПЦР идеальна для анализа метилирования индивидуальных локусов. В то же время многие ДНК-диагностические процедуры предполагают исследование нескольких генов (локусов) в рамках одного теста. Решение этой задачи при помощи традиционного подхода проведения многолокусной ПЦР в одной пробирке применительно к анализу метилирования наталкивается на препятствие в виде особенностей первичной структуры CpG-островков. От достаточно индивидуальных кодирующих областей генов CpG-островки отличаются сниженной информативностью нуклеотидных последовательностей, что не позволяет осуществлять дизайн удовлетворительно уникальных праймеров для ПЦР-анализа. Как следствие, проведение многолокусной метилчувствительной ПЦР чревато образованием неспецифических продуктов реакции, затрудняющих анализ и интерпретацию результатов диагностики.

Повышение специфичности достигается при использовании для анализа метилирования многих локусов технологии ДНК-микрочипов. Положительный эффект обеспечивается дополнительным этапом анализа – гибридизацией ПЦР-продуктов со специфичными ДНК-зондами. Однако, несмотря на то, что консенсусной последовательности CpG-островка как такового не существует, степень гомологии между различными CpG-островками значительно выше, чем между различными индивидуальными кодирующими последовательностями ДНК. Такая пониженная информативность последовательностей CpG-островков в случае применения ДНК-микрочипов создает технические проблемы, вызванные перекрестной гибридизацией. В целом, любые технологии анализа метилирования ДНК, включающие этап гибридизации (будь то отжиг праймеров или гибридизация зондов на последовательностях CpG-островков), исключительно требовательны к дизайну многолокусных реакций, а их специфичность прогрессивно снижается по мере увеличения количества локусов, анализируемых в рамках одного теста.





Один из подходов, позволяющих избежать этапа гибридизации ДНК в процессе анализа метилирования, - адаптер-опосредованная ПЦР фрагментов ДНК, полученных в результате гидролиза метилчувствительными рестриктазами. Такой подход использовался при разработке метода AFLOAT, направленного на поиск дифференциально метилированных локусов геномов. На сегодняшний день адаптер-опосредованная ПЦР, в частности, в формате АИМС, - единственная многолокусная система метилчувствительного анализа ДНК, полностью свободная от проблем, связанных с перекрестной гибридизацией C,G-обогащенных участков ДНК с пониженной информативностью нуклеотидных последовательностей. Возможность расширения количества амплифицируемых локусов создает условия для эффективного всестороннего контроля метилчувствительной реакции на основе константно метилированных и константно неметилированных локусов, естественным образом присутствующих в репрезентациях АИМС (рис. 12).

 Электорофореграммы продуктов АИМС,-10






Рис. 12. Электорофореграммы продуктов АИМС, полученных на ДНК из образцов рака молочной железы (красные графики), соотнесенных с полной репрезентацией АИМС (черные графики). Показано аномальное метилирование промоторных CpG-островков генов KIAA1324L, PURB, ATMIN, IQSEC2 и EST CN371412. Два раздвоенных высокоамплитудных сигнала метилирования в центре каждой электрофореграммы соответствуют фрагментам генов CUX1 и ZBTB4, характеризующимся метилированным состоянием в нормальных и опухолевых тканях человека и служащим контролем эффективности амплификации. Двоение некоторых пиков, соответствующих индивидуальным продуктам АИМС, объясняется различиями в электрофоретической подвижности комплементарных нитей амплификатов в высокоразрешающем денатурирующем полиакриламидном геле и не влияет на качество анализа результатов исследования. Естественный контроль полноты гидролиза ДНК обеспечивают облигатно неметилированные локусы генома (соответствующие продукты АИМС отмечены фиолетовыми стрелками).

Таким образом, в результате анализа нормальных и опухолевых тканей, в том числе с использованием методов непредвзятого скрининга дифференциального метилирования ДНК, впервые сформированы системы контролей полноты рестрикции геномной ДНК и эффективности амплификации, обеспечивающие достоверность исследований метилирования отдельных локусов геномов при канцерогенезе методом МЧ-ПЦР.

Характеристика метилирования отдельных локусов генома, выявленных методами непредвзятого скрининга

С использованием разработанных систем МЧ-ПЦР охарактеризованы частоты аномального метилирования локусов, выявленных методами непредвзятого скрининга, в образцах РМЖ (табл. 2).

Таблица 2. Частоты метилирования локусов, выявленных методами непредвзятого скрининга, в образцах ткани РМЖ, прилежащей условно нормальной ткани и нормальной ткани молочной железы. н/д – различия недостоверны.

Ген/Локус

Опухоль, %

Условная норма, %

p

LAMC3 (9q34.13)

8,0 (8/100)

0 (0/100)

<0,05

SEMA6B (19p13.3)

38,0 (38/100)

3,0 (3/100)

<0,01

VCIP135 (8q13.1)

3,0 (3/100)

0 (0/100)

н/д

BIN1 (2q14.3)

18,0 (18/100)

0 (0/100)

<0,01

KCNH2 (7q36.1)

4,0 (4/100)

0 (0/100)

н/д

CACNG4 (17q24.2)

3,0 (3/100)

0 (0/100)

н/д

PSMF1 (20p13)

3,0 (3/100)

0 (0/100)

н/д

LAMB1 (17q31.1)

16,1 (14/87)

9,1 (3/33)

н/д

RAI1(17p11.2)

72,4 (63/87)

0 (0/33)

<0,01

KCNH8 (3p24.3)

80,8 (30/87)

12,1 (4/33)

<0,05

DOCK6 (19p13.2)



Pages:     | 1 |   ...   | 3 | 4 || 6 | 7 |   ...   | 9 |
 


Похожие работы:







 
2013 www.деньсилы.рф - «МЕДИЦИНА-ЛЕЧЕНИЕ-ОЗДОРОВЛЕНИЕ»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.