WWW.ДЕНЬСИЛЫ.РФ

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА - Медицина

 

Pages:     | 1 || 3 | 4 |

Анализ дифференциального метилирования геномов методами непредвзятого скрининга

-- [ Страница 2 ] --

Клеточные линии рака молочной железы ZR751, HBL100, HS 578 T, BT474, MCF7 и T47D, послужившие материалом для дифференциального метилирования ДНК, предоставлены Федеральным государственным бюджетным учреждением науки «Институт биологии гена» Российской академии наук.

Экстракция и анализ геномной ДНК.

Экстракцию ДНК клеточных линий проводили стандартным методом (Sambrook J. et al., 1989). Рестрикцию ДНК, лигирование с адаптерами, полимеразную цепную реакцию и электрофорез проводили стандартными методами (Sambrook J. et al., 1989). Использовали рестриктазы SmaI, XmaI (Сибэнзим, Россия), ДНК лигазу T4 (Fermentas, Литва), ДНК-полимеразу Taq (Сибэнзим, Россия).

Валидацию статуса метилирования изучаемых локусов проводили метилспецифическим секвенированием (Hajkova P., 2002) и метилспецифическим анализом конформации однонитевых фрагментов (Bianco T., 1999). Реакцию автоматического прямого секвенирования проводили на приборе ABI Prism 3100, с использованием BigDye Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems, США) по протоколам производителя.

Разработка алгоритмов и программного обеспечения непредвзятого скрининга дифференциального метилирования геномов.

При разработке программ использованы методы модульного, объектно-ориентированного и динамического программирования, цифровой обработки сигналов, численной оптимизации, разработки пользовательских интерфейсов, а также реляционная методология организации хранилища данных.

Использован портал организации совместной работы http://www.assembla.com , в состав которого интегрированы репозиторий с системой управления версиями, система управления задачами, пополняемая участниками проекта база знаний.

Целевой платформой разработки выбрана программная платформа.NET Framework для Microsoft Windows, позволяющая вести разработку с использованием различных специализированных языков программирования.

Программы написаны на языках программирования C# и С++.

Для хранения данных продуктов обработки исходной последовательности генома эндонуклеазой рестрикции используется реляционная система управления базами данных Microsoft SQL Server. Возможность задания индексов по предварительно вычисленным фланкирующим последовательностям фрагментов позволяет значительно ускорить выборку данных. Реляционная методология организации хранилища данных характеризуется простотой структуры данных, удобным табличным представлением и возможностью использования формального аппарата алгебры отношений и реляционного исчисления для обработки данных.

Программное обеспечение планирования и анализа результатов экспериментов.

В качестве инструмента для дизайна эксперимента по амплификации интерметилированных сайтов (АИМС) путем предварительного компьютерного моделирования ожидаемых результатов использована собственная программа компьютерной симуляции AIMS in silico.

В модифицированном методе АИМС (схема оригинального метода представлена на рис. 1) разделение флуоресцентно меченых продуктов проводили капиллярным электрофорезом на приборе ABI Prism 3100 (Applied Biosystems, США). Результаты фрагментного анализа ДНК обрабатывали с использованием программы GeneMapper 2.0 (Applied Biosystems, США) и собственного программного обеспечения PeakPick. Геномную идентификацию дифференциально метилированных участков ДНК, выявляемых методом АИМС, проводили методом рестриктазного картирования на основе моделей, сформированных программой AIMS in silico.

В качестве материала для компьютерного моделирования эпигеномных экспериментов использовали последовательность генома человека hg19, GRCh37 Genome Reference Consortium http://www.ncbi.nlm.nih.gov/projects/genome/assembly/ grc/ в файлах формата FASTA ( http://www.ncbi.nlm.nih.gov/BLAST/fasta.shtml ).

Данные электрофореграмм получены из выходных файлов автоматического генетического анализатора ABI Prism 3100 (Applied Biosystems, США) формата ABIF ( http://www.appliedbiosystems.com ).

III. РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ.

3.1. Современный алгоритм непредвзятого скрининга дифференциального метилированния геномов

Идеологическую и методологическую основу проведенного исследования составил специально разработанный алгоритм скрининга дифференциального метилирования геномов. Алгоритм состоит из трех основных блоков: 1) генноинженерный метод формирования репрезентаций эпигеномов; 2) метод высокоразрешающего разделения отдельных элементов репрезентации (исследуемых фрагментов ДНК); 3) методы компьютерного моделирования результатов экспериментов, планирования in silico, анализа результатов исследований in vitro.

В качестве основного подхода к формированию репрезентаций эпигеномов был принят метод, в наибольшей степени удовлетворяющий сформулированным требованиям – непредвзятому характеру скрининга, возможности стандартизации процедуры эксперимента, простоте и экономичности протоколов, возможности быстрой и технически несложной идентификации геномной принадлежности дифференциально метилированных участков ДНК, и возможности тестирования большого количества (десятков) образцов в одном эксперименте. Из опубликованных к настоящему времени методов таким требованиям в наибольшей степени удовлетворяет АИМС - амплификация интерметилированных сайтов (Frigola J. et al., 2002).



Серьезным недостатком метода АИМС является техническая сложность геномной идентификации идентификации продуктов реакции. Это относится как к методу визуализации (радиоавтография низкопроцентного денатурирующего полиакриламидного геля большого размера с последующим совмещением изображения с реальным гелем), так и к методу определения геномной принадлежности интересующих фрагментов (клонирование амплификатов, содержащихся в элюатах интересующих областей, с последующим секвенированием множества клонов). В идеале метод, генерирующий такое значительное количество целевых фрагментов ДНК, как АИМС (в чем его несомненный плюс) должен быть реализован на платформе, обеспечивающей разрешение фрагментов ДНК по длине с точностью до одного нуклеотида. Такая платформа представлена на сегодняшний день капиллярным электрофорезом в формате фрагментного анализа. Примененный способ дискриминации продуктов АИМС, синтезированных с флуоресцентно меченых праймеров, с помощью многоканального капиллярного электрофореза значительно повышает разрешающую способность метода и избавляет от необходимости использования радиоактивно меченых материалов.

Высокая разрешающая способность капиллярного электрофореза в сочетании с компьютерным обеспечением анализа результатов позволяют с высокой точностью определять длины выявляемых дифференциально метилированных фрагментов генома. Такая информация может использоваться для идентификации геномной локализации интересующих фрагментов in silico, что исключает этапы физической изоляции их из геля, клонирования и секвенирования, снижая, тем самым, временные затраты, трудоёмкость и ресурсоёмкость исследования.

В целом, сочетание преимуществ АИМС, капиллярного электрофореза и компьютерного анализа позволяют разработать оригинальный современный алгоритм непредвзятого скрининга дифференциального метилирования геномов (рис. 2).

3.2. Алгоритм и компьютерная программа моделирования результатов экспериментов АИМС с использованием баз данных нуклеотидных последовательностей

В классическом варианте реализация АИМС приводит к формированию сложных фингерпринтов, количественный и качественный состав которых практически невозможно предугадать. С точки зрения идеологии непредвзятости скрининга метилирования такая ситуация оптимальна. В то же время получение четких информативных наборов продуктов АИМС возможно далеко не при любых условиях экспериментов.

Технология АИМС исключительно консервативна. На этапе лигирования фланкирующие участки всех продуктов рестрикции образцов геномной ДНК унифицируются с точки зрения последующей ПЦР, проводимой с универсальных праймеров. Нуклеотидный состав праймеров на 90-100% определяется составом адаптеров. Жесткие условия ПЦР, дающие высокую специфичность реакции и отсутствие неспецифичных продуктов, обеспечивают высокий уровень стандартизации метода и повторяемости результатов. Во всем протоколе АИМС существуют только два относительно гибких сегмента. Это выбор изошизомеров рестриктаз, используемых при подготовке репрезентаций геномов, и вариации 3’-концов праймеров, которые могут различаться по длине на 1-4 нуклеотидов. Эти вариабельные участки праймеров («удлинители») могут различаться не только по длине, но и по нуклеотидному составу. Таким образом, дизайн эксперимента включает в себя лишь выбор рестриктаз, протяженности и нуклеотидного состава удлинителей. От этих факторов зависит количество возможных результирующих фрагментов АИМС и их геномная принадлежность. Тем не менее, разнообразие картин АИМС, возникающее при разных сочетаниях указанных переменных параметров, исключительно велико.

Адекватный дизайн экспериментов АИМС можно обеспечить путем предварительного математического моделирования ожидаемых результатов. Такая возможность обеспечивается разработанной программой компьютерной симуляции AIMS in silico. Алгоритм работы программы включает моделирование полного набора фрагментов ДНК, получаемых при обработке исследуемого генома рестриктазой, выбранной для формирования геномной библиотеки (традиционно для АИМС это рестриктаза XmaI). Полученный набор фрагментов представляет собой полную репрезентацию АИМС, служащую основой для моделирования возможных исходов АИМС in vitro при различных условиях. Полученная полная репрезентация виртуально подвергается лигированию с предложенным пользователем адаптером и ПЦР с универсальными праймерами, содержащими заданные удлинители на 3'-конце. Получаемые полные наборы возможных продуктов АИМС для заданных условий можно характеризовать с количественной и качественной точек зрения, причем в последнем случае реальное клонирование и секвенирование отдельных фрагментов ДНК заменяется сравнением с уже существующими геномными базами данных. Таким образом, алгоритм моделирования результатов экспериментов воспроизводит лабораторный протокол АИМС.

Интерактивный интерфейс разработанной на основе этого алгоритма программы AIMS in silico позволяет осуществлять ввод файлов, содержащих нуклеотидные последовательности, предназначенные для анализа, и выбор пользователем исходных условий эксперимента. К вводимым условиям эксперимента относятся: сайт узнавания рестриктазы, используемой для скрининга дифференциального метилирования, нуклеотидный состав короткой и длинной частей адаптера, нуклеотидный состав специфического удлинителя универсального праймера. Предусмотрена возможность ограничения длин результирующих фрагментов АИМС, в зависимости от способа их физического разделения. Выходные данные: общее количество продуктов ПЦР, которые могут быть получены при проведении АИМС с заданными условиями, их распределение по длинам, нуклеотидные последовательности каждого из ПЦР-продуктов. В графическом виде информация представляется как виртуальная хроматограмма капиллярного электрофореза, построенная в виде суперпозиции пиков Гаусса, соответствующих индивидуальным продуктам АИМС. Выбор отдельного пика при помощи курсора вызывает информацию о нем в специальном окне (рис. 3).





При составлении программы использованы преимущества технологии баз данных. Собственно анализ целевых последовательностей начинается с создания пользователем базы данных, содержащей информацию о каждом участке изучаемого генома, возникающем после обработки геномной ДНК эндонуклеазой рестрикции: длину продукта рестрикции и его нуклеотидный состав. После того, как такая база данных создана и сохранена, возможность быстрого обращения к ее содержимому обеспечивает высокую скорость симуляции результатов АИМС для различных удлинителей универсального праймера.

 Пример окна программы AIMS in silico с выходными данными. 3.3.-1

Рис. 1. Пример окна программы AIMS in silico с выходными данными.

3.3. количественная и качественная характеристика продуктов АИМС, получаемых при различных экпериментальных условиях

Характеристика распределения сайтов узнавания

эндонуклеазы рестрикции XmaI в геноме человека.

В классическом варианте АИМС используется эндонуклеаза рестрикции XmaI с сайтом узнавания C^CCGGG. Программа AIMS in silico позволила оценить количественный и качественный состав продуктов гидролиза геномной ДНК человека этой рестриктазой. Общее число продуктов гидролиза составило 374146. Распределение последовательности CCCGGG по геному оказалось в целом случайным. Характер распределения сайтов узнавания XmaI одинаков на всех хромосомах. Митохондриальный геном последовательностей CCCGGG не содержит. Случайное пространственное распределение сайтов CCCGGG отличает рестриктазу XmaI от часто используемой в эпигенетических исследованиях HpaII, сайты узнавания которой преимущественно концентрируются в областях CpG-островков. Случайное распределение сайтов CCCGGG дало основание предположить, что использование XmaI в экспериментах АИМС позволит проводить дифференциальный анализ метилирования самых разнообразных, с точки зрения структуры и функции, геномных элементов. Это предположение полностью подтверждается более детальным анализом продуктов рестрикции XmaI.

Характер распределения XmaI-фрагментов, ограниченных порогом длин эффективного разделения капиллярным электрофорезом, показан на рис. 4, А. Общее число продуктов АИМС длиной до 600 нуклеотидов составило 73102.

Рис. 2. Виртуальные электорофореграммы АИМС, полученные с помощью программы AIMS in silico: А - характер распределения продуктов АИМС без удлинителей, отражающий распределение в геноме XmaI-фрагментов длиной до 600 н.п. Б, В – виртуальные электорофореграммы АИМС с удлинителями CG и CCG, соответственно.

Качественный анализ полученной репрезентации генома показал, что она обогащена повторяющимися последовательностями с длинами коровых единиц от 100 до 1000 нуклеотидов, принадлежащими самым разнообразным классам рассеянных и тандемных повторов: Alu, LTR, прителомерным повторам, неклассифицированным повторам низкой сложности и др. Некоторые близкородственные, или, по крайней мере, в значительной степени гомологичные высококопийные повторяющиеся последовательности образовали выраженные кластеры продуктов АИМС (несколько высоких, до 1500 копий, пиков на хроматограмме, в области длин до 80 нуклеотидов, рис. 4, А). Присутствуют в разных соотношениях и другие классы геномных последовательностей (уникальные межгенные и интронные участки, CpG-островки и т.д.).

Количественная иерархия продуктов АИМС генома человека

Для ограничения сложности картин АИМС с целью облегчения анализа электрофореграмм при проведении ПЦР используются праймеры, удлиненные на несколько нуклеотидов. Обычно выбор удлинителей праймеров проводится случайным образом и утверждается либо отвергается по результатам экспериментов.

Авторы метода АИМС изначально постулировали, что при прочих равных условиях добавление каждого дополнительного нуклеотида к универсальным праймерам предполагает снижение сложности результирующей картины (т.е. снижение количества продуктов АИМС) примерно в 5 раз для C,G и в 3 раза для A,T. Такое предположение сделано, исходя из представленности нуклеотидов в геноме человека.

Случайный выбор удлинителей с использованием такой приблизительной эмпирической формулы для оценки сложности репрезентаций геномов снижает ценность АИМС как универсального метода скрининга, необходимой характеристикой которого должен стать высокий уровень стандартизации. Кроме того, использование различных наборов нуклеотидов в качестве удлинителей должно сдвигать спектральный состав результирующих репрезентаций либо в А,Т-богатые области, либо в области CpG-островков, и это влияние должно, несомненно, учитываться не только при анализе результатов, но и на самом первом этапе исследования – в процессе определения дизайна эксперимента.



Pages:     | 1 || 3 | 4 |
 


Похожие работы:







 
2013 www.деньсилы.рф - «МЕДИЦИНА-ЛЕЧЕНИЕ-ОЗДОРОВЛЕНИЕ»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.