WWW.ДЕНЬСИЛЫ.РФ

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА - Медицина

 

Pages:     | 1 | 2 || 4 |

Анализ дифференциального метилирования геномов методами непредвзятого скрининга

-- [ Страница 3 ] --

Для предоставления исследователям возможности обоснованного выбора удлинителей с помощью программы AIMS in silico сформировано графическое представление количественной иерархии продуктов АИМС генома человека (рис. 5). Приведенная гистограмма ясно показывает, что для подавляющего числа семейств удлинителей достаточно трех нуклеотидов, чтобы снизить сложность картины АИМС таким образом, чтобы продукты ПЦР можно было четко дифференцировать после разделения в полиакриламидном геле. Речь идет о количестве продуктов, не превышающем второго порядка в пределах длин до одной тысячи нуклеотидов.

Предоставляемая программой симуляции АИМС in silico возможность построения иерархического дерева конечных продуктов в зависимости от длин и нуклеотидного состава удлинителей не только позволяет уточнить функцию снижения сложности для каждого конкретного случая, но и демонстрирует удивительные результаты. Так, характер первого же нуклеотида в удлинителе практически не влияет на сложность картины: присоединение нуклеотида А, Т, С или G приводит к ограничению количества продуктов соответственно до 8.5, 5.5, 7 и 7 тысяч. При этом разница результатов присоединения А и Т значительно более выражена, чем разница между А/Т и C/G. Чрезвычайно выраженные различия наблюдаются на уровне удлинителей из двух нуклеотидов. Так, в семействе удлинителей с первым нуклеотидом Т значения результирующих количеств продуктов АИМС для ТА, ТС, ТG и ТТ составляют 20, 152, 191 и 2547 соответственно, т.е. разница в степени сложности репрезентаций составляет целых два порядка. Снижение сложности до состояния практически полной неинформативности для некоторых удлинителей наступает уже на уровне трех нуклеотидов. В частности, АИМС in silico с одним из удлинителей ААТ, ТАТ, ТСА и GТА приводит к возникновению лишь одного продукта реакции. В то же время, использование некоторых других тринуклеотидных удлинителей приводит к едва заметному снижению сложности исходной картины: например, для АGG количество фрагментов составляет 2829, для ТТС – 2161. Экспериментальное определение этих параметров потребовало бы невероятных затрат труда, времени и материалов, а неопределение наверняка привело бы к ложной интерпретации опытных данных.

Важным качественным параметром, определяющим дизайн АИМС, является характер распределения продуктов ПЦР по длинам в анализируемой области. Распределение должно быть в целом равномерным, длины отдельных фрагментов в идеале должны различаться не менее чем на два нуклеотида. В этом случае будет обеспечиваться четкая идентификация пиков на хроматограмме капиллярного электрофореза и однозначность результатов анализа.

Не менее важным фактором, влияющим на выбор удлинителей для проведения АИМС, является их полная гомология с теми или иными структурно-функциональными элементами генома, определяющая конечный качественный состав анализируемых фрагментов ДНК.

Качественный состав продуктов АИМС генома человека и дизайн экспериментов АИМС при помощи программы AIMS in silico

Нуклеотидные последовательности продуктов АИМС, предоставляемые программой AIMS in silico, позволяют однозначно локализовать анализируемые фрагменты и, пользуясь доступными базами данных, определить принадлежность каждого из них к тому или иному классу геномных последовательностей. Используя эту возможность, можно целиком осуществить обоснованный дизайн эксперимента АИМС в зависимости от целей исследования и доступной приборной базы, ни разу не прибегая к планировочным экспериментам. Ниже приводится конкретный пример, демонстрирующий возможности дизайна экспериментов АИМС in silico.

Поставим задачу определения условий АИМС для изучения характера метилирования не менее 100 CpG-островков в образцах условно нормальной и опухолевой тканей молочной железы. Планирование такого эксперимента будет включать следующие этапы. Прежде всего, предложим рабочую гипотезу, ограничивавшую качественный состав потенциальных удлинителей. Гипотеза заключается в простом и очевидном предположении, что для обогащения фракции продуктов АИМС фрагментами классических CpG-островков необходимо использовать удлинители, содержащие по крайней мере один динуклеотид CG. Среди двухнуклеотидных такой удлинитель, очевидно, лишь один – CG, и результаты компьютерной симуляции АИМС (рис. 4, Б) показывают, что его использование в эксперименте нецелесообразно: в пределах длин до 600 нуклеотидов он создает 308 фрагментов, причем их распределение не соответствует сформулированным выше требованиям.

Среди тринуклеотидных удлинителей последовательностей, содержащих CG, восемь: ACG, CCG, CGA, CGC, CGT, CGG, GCG, и TCG. Количество продуктов АИМС длиной до 600 нуклеотидов для каждого из них - соответственно 10, 71, 3, 73, 3, 43, 65, и 21. Ни один из этих удлинителей не дает возможности анализа 100 фрагментов АИМС, поэтому выберем из них три, обещающих достаточно высокую информативность – CCG, CGC и GCG. Рассмотрение результатов виртуального электрофореза для удлинителя CGC (рис. 6, Б) показывает, что его высокая информативность, предполагаемая исходя из количества продуктов АИМС, обманчива. Из 73 фрагментов 60 группируются в области до 250 нуклеотидов; формируются 8 кластеров фрагментов одной длины, относящихся к 2-10 геномным локусам. Кластер фрагментов с длинами 222 н.п. включает в себя 5 продуктов АИМС, представляющих участки сателлитных повторов и не имеющих отношения к CpG-островкам. Одиннадцать фрагментов с общей длиной 44 н.п. и три фрагмента с общей длиной 46 н.п. представлены высокогомологичными участками непромоторных CpG-островков. Что же касается предсказанных продуктов АИМС, получаемых при использовании удлинителей CCG и GCG, то их распределение более равномерно, расстояние между большинством пиков превышает два нуклеотида, обе репрезентации содержат лишь по одному кластеру из трех продуктов АИМС (рис. 6, А и В). По этим признакам удлинители CCG и GCG в большей степени соответствуют оптимальным параметрам репрезентации, чем CGC.



На следующем этапе необходимо определить качественный состав продуктов АИМС, получение которых возможно с выбранными удлинителями CCG и GCG. Используя нуклеотидные последовательности продуктов АИМС, с помощью программы BLAT определяем их геномную локализацию и принадлежность к классу CpG-островков.

Рассмотрим результаты этого этапа более подробно на примере удлинителя CCG. Пример соответствующей виртуальной хроматограммы представлен на рис. 6, А. Состав предсказанной репрезентации генома отражен на рис. 7. Анализ показывает, что абсолютное большинство результирующих продуктов АИМС при удлинителе CCG принадлежит классическим протяженным CpG-островкам с высоким содержанием CpG-динуклеотидов: от 25 до 400, в среднем 125.

Аналогичные результаты дает количественный и качественный анализ продуктов АИМС при удлинителе GCG. Таким образом, совместный анализ образца биологического материала с использованием удлинителей CCG и GCG позволяет определять состояние метилирования 136 геномных участков, 122 из которых представлены CpG-островками. Дизайн эксперимента АИМС с заранее заданными параметрами завершен.

3.4. Алгоритм и компьютерная программа

геномной идентификации выявляемых дифференциально метилированных участков ДНК

Особенности первичной нуклеотидной последовательности продуктов АИМС не позволяют проводить их точную идентификацию по молекулярной массе в соответствии с распределением, предсказанным in silico. Исключительно обогащенные G,C-нуклеотидами фрагменты ДНК мигрируют в среде разделения со скоростями, отличными от таковых, характерных для фрагментов с усредненным нуклеотидным составом. Кроме того, использование денатурирующей среды для проведения капиллярного электрофореза зачастую вызывает различия электрофоретической подвижности G,C-обогащенных комплементарных фрагментов ДНК, приводя к двоению соответствующих сигналов на электрофореграмме.

Традиционный дизайн АИМС предполагает клонирование и секвенирование интересующих фрагментов ДНК для определения их геномной принадлежности. Пользуясь тем, что определение нуклеотидной последовательности генома человека уже практически полностью завершено и, соответственно, последовательности возможных продуктов АИМС также известны, этапы клонирования и секвенирования заменены последовательными этапами рестриктазного картирования in silico и in vitro.

Для осуществления рестриктазного картирования in silico был введен дополнительный модуль в программу AIMS in silico. Моделирование рестриктазного картирования проводится на основе полной репрезентации АИМС, предсказанной для конкретных условий эксперимента, с использованием рестриктаз, выбираемых из заранее сформированного списка. Сигналы виртуальной электрофореграммы, соответствующие «гидролизованным» продуктам АИМС при выборе конкретной рестриктазы, определяются по изменению цвета.

Виртуальная электрофореграмма результатов рестриктазного картирования продуктов АИМС интерактивна; предусмотрена возможность копирования полной нуклеотидной последовательности выбранного продукта АИМС при помощи курсора (рис. 8).

Разработан алгоритм интеграции рестриктазного картирования in silico и in vitro. Картирование реально получаемых продуктов АИМС проводится, как и в случае компьютерного моделирования, на основе полной репрезентации АИМС, получаемой для конкретных условий эксперимента. Для создания полной репрезентации in vitro из лабораторного протокола АИМС исключается этап гидролиза ДНК метилчувствительной рестриктазой SmaI. Таким образом моделируется состояние полного метилирования изучаемого генома.

3.5. Анализ дифференциального метилирования ДНК клеточных линий рака молочной железы

При сравнении электрофореграмм продуктов АИМС геномов клеточных линий с удлинителем CCG выявлены дифференциально метилированные локусы в диапазонах длин 150-167, 167-176 и 176-190 п.н. (рис. 9).

 Сравнение электрофореграмм продуктов АИМС с удлинителем CCG-8

Рис. 3. Сравнение электрофореграмм продуктов АИМС с удлинителем CCG клеточных линий РМЖ.

Моделирование с помощью программы AIMS in silico предсказывает получение в эксперименте АИМС с удлинителем CCG в указанном диапазоне трех групп продуктов: 1)ccg164, ccg165, ccg168; 2) ccg176, ccg177.1, ccg177.2, и 3) ccg189. Краткая характеристика геномной принадлежности локусов продуктов приведена в таблице 1. Виртуальная электрофореграмма продуктов представлена на рис. 10. С помощью программы AIMS in silico получен план рестриктазного картирования (табл. 2)

Таблица 1. Характеристика геномной принадлежности локусов.

Фрагмент ccg164 ccg165 ccg168 ccg176 ccg177.1 ccg177.2 ccg189
Локали-зация 7p13 16q23.2 10q21.2 12q13.13 7p22.3 13q32.1 21q22.3
Ген PURB ATMIN ANK3 межгенный
40т.п.н.
SCN8A, ANKRD33
MAFK межгенный
16кБ
3’ ABCC4
C2CD2
1 экзон 1 экзон -
1 интрон
1 интрон 1 интрон 1 экзон
(5’UTR)
Нить - + - + -
TSS* 494 248 212 192 43
CpG-островок - + + + + + +
CG-кластер + + + + + + +




* расстояние до TSS (transcription start site – сайт инициации транскрипции)

 Результаты моделирования продуктов АИМС с удлинителем CCG в-9

Рис. 4. Результаты моделирования продуктов АИМС с удлинителем CCG в диапазоне длин 160-190 п.н.

Таблица 2. План рестриктазного картирования

ccg164 ccg165 ccg168 ccg176 ccg177.1 ccg177.2 ccg189
Acc16I +
SbfI +
EgeI + +
AvrII +
Bso31I +
BssHII + +


Pages:     | 1 | 2 || 4 |
 


Похожие работы:







 
2013 www.деньсилы.рф - «МЕДИЦИНА-ЛЕЧЕНИЕ-ОЗДОРОВЛЕНИЕ»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.