WWW.ДЕНЬСИЛЫ.РФ

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА - Медицина

 

Pages:   || 2 | 3 | 4 |

Циклоспорин а-чувствительное, кальций-независимое разобщающее действие жирных кислот в митохондриях печени крыс

-- [ Страница 1 ] --

На правах рукописи

РЫБАКОВА СНЕЖАНА РАФАИЛОВНА

Циклоспорин А-чувствительное, кальций-независимое разобщающее действие

жирных кислот в митохондриях печени крыс

03.01.04 биохимия

Автореферат

диссертации на соискание ученой степени

кандидата биологических наук

Казань 2013

Работа выполнена на кафедре биохимии и физиологии и в лаборатории молекулярной биоэнергетики ФГБОУ ВПО «Марийский государственный университет» (г. Йошкар-Ола)

Научный руководитель: Самарцев Виктор Николаевич,

доктор биологических наук, профессор

Официальные оппоненты: Минибаева Фарида Вильевна, доктор биологических наук, заведующая лабораторией окислительно-восстановительного метаболизма Федерального государственного бюджетного учреждения науки «Казанский институт биохимии и биофизики» Казанского научного центра РАН
Амерханов Зариф Гариевич, кандидат биологических наук, старший научный сотрудник лаборатории механизмов природных гипометаболических состояний Института биофизики клетки РАН (г. Пущино) учреждения РАН
Ведущая организация: ФГБОУ ВПО «Нижегородский государственный университет им. Н.И. Лобачевского»

Защита диссертации состоится «14» ноября 2013 г. в 13.00 часов
на заседании диссертационного совета Д 212.081.08 ФГАОУ ВПО «Казанский (Приволжский) федеральный университет» по адресу: 420008, г. Казань, ул. Кремлевская, д. 35.

С диссертацией можно ознакомиться в библиотеке им. Н.И. Лобачевского при ФГАОУ ВПО «Казанский (Приволжский) федеральный университет» по адресу: 420008, г. Казань, ул. Кремлевская, 35.

Автореферат разослан «___» ___________2013 г.

Ученый секретарь

диссертационного совета, доктор

биологических наук, профессор Абрамова Зинаида Ивановна

ОБЩАЯ ХАРАТЕРИСТИКА РАБОТЫ

Актуальность проблемы. В клетках печени от 20 до 30% потребления кислорода митохондриями не связано с синтезом АТР (Rolfe and Brand, 1997). Такое, так называемое, свободное окисление имеет важное физиологическое значение (Skulachev, 1998; Echtay, 2007). Одним из основных механизмов свободного окисления в митохондриях является пассивная утечка протонов через внутреннюю мембрану митохондрий, которая может быть усилена с помощью природных протонофорных разобщителей окислительного фосфорилирования свободных монокарбоновых жирных кислот (Skulachev, 1998). В митохондриях печени протонофорное разобщающее действие жирных кислот почти на 80% осуществляется при участии белков-переносчиков внутренней мембраны ADP/ATP- и аспартат/глутаматного антипортеров (Skulachev, 1998; Самарцев и др., 2011). Все еще не ясно, чем обусловлена оставшаяся часть разобщающей активности жирных кислот.

Естественными метаболитами монокарбоновых жирных кислот являются,-диоловые (,-дикарбоновые) кислоты, образующиеся в клетках печени путем -окисления их монокарбоновых аналогов (Ferdinandusse et al., 2004; Wanders et al., 2011). Показано, что одна из таких кислот –,-тетрадекандиоловая, стимулирует дыхание митохондрий печени без снижения мембранного потенциала (Маркова и др., 1999). Необходимо проведение дальнейших исследований, направленных на выяснение механизма разобщающего действия как монокарбоновых жирных кислот, так и,-диоловых кислот.

В качестве возможного инструмента для исследования действия жирных кислот наше внимание привлек циклоспорин А, нейтральный липофильный циклический ундеканпептид, хорошо известный как эффективный иммуносупрессор (Schreiber and Crabtree G.R., 1992; Mathieson, 2000). В митохондриях печени циклоспорин А связывается с высоким сродством с пептидил-пролил цис-транс изомеразой (циклофилин D) и препятствует индукции кальций-зависимой неспецифической проницаемости внутренней мембраны митохондрий (открытие поры) уже при его концентрации 150 – 300 нМ (Halestrap and Davidson, 1990; Andreeva and Crompton, 1994). Вместе с тем остается не известным, как влияет циклоспорин А в более высокой концентрации (5 – 10 мкМ) на дыхание и окислительное фосфорилирование митохондрий печени. Можно предположить, что циклоспорин А, будучи нейтральным липофильным соединением, но в то же время имея способные формировать водородные связи полярные группы, в высокой концентрации мог бы оказывать влияние на разобщающее действие свободных моно- и дикарбоновых жирных кислот.

Митохондрии печени месячных крысят массой 50 г. по сравнению с митохондриями печени взрослых крыс массой 250 г. имеют более высокую скорость дыхания как в контролируемом состоянии, так и в присутствии пальмитиновой кислоты (Самарцев и др., 2004). Представляет интерес выяснить как влияет циклоспорин А на разобщающее действие жирных кислот в митохондриях печени крыс различного возраста.

Цель работы: выяснение механизма циклоспорин А-чувствительного, кальций-независимого разобщающего действия жирных кислот в митохондриях печени крыс. Для достижения этой цели необходимо было решить следующие задачи.



1. Выявить влияние циклоспорина А в концентрации 5-10 мкМ на показатели дыхания и окислительного фосфорилирования митохондрий печени крыс.

2. Исследовать действие циклоспорина А (5-10 мкМ) на стимулированное пальмитиновой и лауриновой кислотами дыхание митохондрий печени крыс.

3. Определить влияние циклоспорина А в концентрации 5-10 мкМ на сниженный жирными кислотами мембранный потенциал митохондрий печени крыс.

4. Исследовать влияние,-тетрадекандиоловой кислоты на дыхание и окислительное фосфорилирование митохондрий печени крыс в отсутствии и присутствии циклоспорина А.

5. Сравнить влияние циклоспорина А в эффективной концентрации на стимулированное пальмитиновой кислотой дыхание митохондрий печени крыс разного возраста.

Научная новизна работы. Впервые проведено комплексное исследование влияния циклоспорина А в различных и в особенности в высоких для его применения концентрациях на показатели дыхания и окислительного синтеза АТР митохондрий печени крыс как в отсутствии, так и в присутствии природных разобщителей окислительного фосфорилирования свободных моно- и дикарбоновых жирных кислот. Показано, что в концентрации вплоть до 10 мкМ циклоспорин А не оказывает влияния на дыхание митохондрий печени в состояниях 2 и 4, а также при условии максимальной стимуляции дыхания 2,4-динитрофенолом. В этой же концентрации циклоспорин А вызывает небольшое снижение скорости дыхания в состоянии 3 и скорости фосфорилирования ADP (окислительного синтеза АТР). Впервые установлено, что в концентрации 5 – 10 мкМ циклоспорин А в митохондриях печени способен ингибировать разобщающее действие пальмитиновой и лауриновой кислот как в отсутствие, так и в присутствии карбоксиатрактилата и глутамата (или аспартата) и такое его действие не сопровождается повышением мембранного потенциала. В такой же высокой концентрации циклоспорин А полностью устраняет способность,-тетрадекандиоловой кислоты обратимо стимулировать дыхание митохондрий печени в отсутствие синтеза АТР. На основании полученных результатов сформулирована оригинальная гипотеза о том, что в митохондриях печени крыс составляющая разобщающего действия монокарбоновых жирных кислот, чувствительная к циклоспорину А, и разобщающее действие,-диоловых кислот осуществляется по одному и тому же механизму внутреннего разобщения. Впервые показано, что способность пальмитиновой кислоты стимулировать дыхание митохондрий печени крыс по механизму внутреннего разобщения зависит от возраста этих животных – больше в митохондриях крысят, чем взрослых крыс.

Научно-практическое значение работы. Полученные при выполнении диссертационной работы научные результаты имеют, прежде всего, фундаментальное биологическое значение. Они расширяют и углубляют представления о механизмах регуляции свободного окисления в митохондриях животных. Результаты диссертационного исследования могут быть использованы в фундаментальных исследованиях в области биохимии, биофизики, биоэнергетики, а также в области экспериментальной медицины. Новые знания, полученные при выполнении диссертации, в перспективе могут быть использованы для разработки методов и средств управления термогенезом у млекопитающих путем изменения активности свободного окисления в митохондриях.

Основные научные положения, выносимые на защиту.

1. В митохондриях печени животных составляющая часть разобщающей активности монокарбоновых жирных кислот, не связанная с функционированием ADP/ATP- аспартат/глутаматного антипортеров, и разобщающая активность,-дикарбоновых кислот осуществляется по одному и тому же механизму внутреннего разобщения.

2. Циклоспорин А в концентрации 10 мкМ может быть использован как инструмент для оценки степени индукции моно- и,-дикарбоновыми жирными кислотами внутреннего разобщения в митохондриях печени животных.

3. Активность пальмитиновой кислоты как индуктора свободного окисления в митохондриях печени крыс по механизму внутреннего разобщения зависит от возраста этих животных.

Апробация работы. Результаты диссертационной работы были доложены на международной конференции «Рецепция и внутриклеточная сигнализация» (Пущино, 2009 г); на первой международной научно-практической конференции «Высокие технологии, фундаментальные и прикладные исследования в физиологии и медицине» (Санкт-Петербург, 2010 г.); на 15-ой и 16-ой Международных Пущинских школах-конференциях молодых ученых (Пущино, 2011 и 2012 г.); на международной конференции «Рецепторы и внутриклеточная сигнализация» (Пущино, 2011 г.); на Международной конференции молодых ученых 22-24 октября 2012 г. «Экспериментальная и теоретическая биофизика `12» (Пущино, 2012 г.); на I Всероссийской интернет-конференции «Современные проблемы биохимии и бионанотехнологии» (Казань, 2010 г.); на тринадцатой постоянно действующей Всероссийской междисциплинарной научной конференции с международным участием «Глобализация. Глобалистика. Потенциалы и перспективы России в глобальном мире» (Йошкар-Ола 2010 г.); на Всероссийской конференции «Актуальные проблемы экологии, биологии и химии» (Йошкар-Ола 2010 г.); на IV съезде биофизиков России 20-26 августа 2012 г. (Нижний Новгород, 2012 г.).

Финансовая поддержка работы. Работа выполнена при финансовой поддержке аналитической ведомственной целевой программы «Развитие научного потенциала высшей школы (2009 – 2011 годы)» (№ 2.1.1/13090) и Федеральной целевой программы Министерства образования и науки Российской Федерации (соглашение 14.В37.21.0191).





Публикации. По теме диссертации опубликованы 4 статьи в ведущих научных журналах, рекомендованных ВАК, и 11 статей, тезисов докладов региональных, всероссийских и международных научных конференций.

Структура и объем диссертации. Диссертация состоит из введения, обзора литературы, описания методов исследования, результатов исследования и их обсуждения, выводов и списка цитируемой литературы. Работа изложена на 129 страницах, включая список литературы, иллюстрационный материал включает 33 рисунка и 10 таблиц.

МАТЕРИАЛЫ И МЕТОДЫ ИССЛЕДОВАНИЯ

Экспериментальные животные. В работе были использованы белые беспородные крысы-самцы в возрасте 9 – 12 месяцев с массой тела 220 – 260 г и месячные крысята массой 50 г. Содержание, кормление и забой животных соответствовали необходимым требованиям, изложенном в соответствующем руководстве (Западнюк и др., 1983), а также международным правилам «Guide for the Care and Use of Animals» и правилам, утвержденным в системе Министерства высшего и среднего образования СССР (Приказ № 742 от 13 ноября 1984 г.).

Выделение митохондрий. Митохондрии из печени крыс выделяли общепринятым методом дифференциального центрифугирования с последующим удалением эндогенных жирных кислот с помощью БСА (Samartsev et al., 1997a). Среда выделения содержала 250 мМ сахарозу, 1 мМ EGTA и 5 мМ HEPES- трис (рН 7,4). Концентрацию белка митохондрий определяли биуретовым методом, в качестве стандарта использовали БСА.

Регистрация дыхания митохондрий. Дыхание митохондрий регистрировали при температуре 25°С с помощью кислородного электрода Кларка и полярографа LP-9 и открытого кислородного электрода (Кондрашова и др., 1973). Концентрация белка митохондрий в кислородной ячейке ~1,1 – 1,2 мг/мл. Среда инкубации содержала 200 мМ сахарозу, 20 мМ KCl, 5 мМ янтарную кислоту, 0,5 мМ EGTA, 2 мМ MgCl2, 10 мМ HEPES-трис (рН 7,4).

Оценка параметров окислительного фосфорилирования митохондрий. При исследовании окислительного фосфорилирования среда инкубации без олигомицина дополнительно содержала 5 мМ КН2РО4 (Pi) и БСА (0,2 мг/мл). Применяли следующие показатели дыхания и окислительного фосфорилирования: J2 – скорость дыхания митохондрий в присутствии Pi до добавления ADP (состояние 2 по Чансу); J3 – скорость дыхания митохондрий в присутствии Pi и ADP (состояние 3 по Чансу); J4 – скорость дыхания митохондрий в присутствии Pi после того, как весь добавленный ADP был израсходован в процессе синтеза АТР (состояние 4 по Чансу); RC – отношение величин J3 и J4 (дыхательный контроль по Чансу); Ju – скорость дыхания митохондрий в присутствии протонофорного разобщителя 2,4-динитрофенола в концентрации, вызывающей максимальную стимуляцию дыхания; ADP/O – стехиометрический коэффициент, показывающий эффективность окислительного фосфорилирования; Jр – скорость синтеза АТР. Размерность величин J2, J3, J4 и Ju – нмоль О2/ мин на 1 мг белка; размерность величины Jр – нмоль ADP / мин на 1 мг белка; размерность величин RC и ADP/O – относительные единицы. Значение коэффициента ADP/O определяли пульсовым методом (Hinkle and Yu, 1979). Значение величины Jр определяли как удвоенное произведение величин J3 и ADP/O.

Оценка разобщающей активности жирных кислот. Для количественной оценки разобщающей активности жирных кислот в соответствии с известной методикой (Самарцев и др., 2004), использовали величину стимуляции дыхания этой жирной кислотой (JU), определяемую как разность между скоростью дыхания митохондрий (нмоль О2/ мин на 1 мг белка) после и до добавления жирной кислоты. Величина JU рассматривается как состоящая из трех частей – чувствительная к карбоксиатрактилату (JC), чувствительная к глутамату (JG) или к аспартату (JA) и чувствительная к циклоспорину А (JCsA). Величину JC определяли как разность между скоростью дыхания митохондрий в присутствии жирной кислоты до и после добавления карбоксиатрактилата, а величину JG – как разность между скоростью дыхания митохондрий в присутствии жирной кислоты и карбоксиатрактилата до и после добавления глутамата. Использовали также величину удельной разобщающей активности (VU) и ее составляющие: чувствительную к карбоксиатрактилату (VC), чувствительную к глутамату (VG) и чувствительную к циклоспорину А (VCsA). Величины VU, VC и VG определяли как частное от деления величин JU, JC и JG соответственно на концентрацию жирной кислоты. Ресопрягающие эффекты карбоксиатрактилата, глутамата или аспартата выражали в процентах и определяли как отношение величины ингибирования дыхания в присутствии жирной кислоты одним из этих ресопрягающих агентов к величине стимуляции дыхания этой жирной кислотой по формуле 100·Ju/(Ju – Jo), где Ju и Jo – скорости дыхания соответственно в присутствии и в отсутствии жирной кислоты, Ju – снижения скорости дыхания ресопрягающим агентом (Самарцев и Кожина, 2008).

Регистрация изменения разности электрических потенциалов () на внутренней мембране митохондрий. Изменение на внутренней мембране митохондрий оценивали по изменению концентрации ТФФ+ в среде инкубации с помощью ТФФ+-чувствительного электрода (Kamo et al., 1979) при 25°С при постоянном перемешивании в открытой ячейке объемом 2 мл. В этих экспериментах в среду инкубации дополнительно добавляли 1,6 мкМ ТФФ+.



Pages:   || 2 | 3 | 4 |
 


Похожие работы:







 
2013 www.деньсилы.рф - «МЕДИЦИНА-ЛЕЧЕНИЕ-ОЗДОРОВЛЕНИЕ»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.